Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells
نویسندگان
چکیده
Research on human brain development and neurological diseases is limited by the lack of advanced experimental in vitro models that truly recapitulate the complexity of the human brain. Here, we describe a robust human brain organoid system that is highly specific to the midbrain derived from regionally patterned neuroepithelial stem cells. These human midbrain organoids contain spatially organized groups of dopaminergic neurons, which make them an attractive model for the study of Parkinson's disease. Midbrain organoids are characterized in detail for neuronal, astroglial, and oligodendrocyte differentiation. Furthermore, we show the presence of synaptic connections and electrophysiological activity. The complexity of this model is further highlighted by the myelination of neurites. The present midbrain organoid system has the potential to be used for advanced in vitro disease modeling and therapy development.
منابع مشابه
I-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model
Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...
متن کاملDynamic behaviour of human neuroepithelial cells in the developing forebrain
To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal...
متن کاملProtein Antagonist Noggin Neurons from Human Embryonic Stem Cells Using the Bone Morphogenic Enhanced Yield of Neuroepithelial Precursors and Midbrain-Like Dopaminergic
It is currently not known whether dopamine (DA) neurons derived from human embryonic stem cells (hESCs) can survive in vivo and alleviate symptoms in models of Parkinson disease (PD). Here, we report the use of Noggin (a bone morphogenic protein antagonist) to induce neuroectodermal cell development and increase the yield of DA neurons from hESCs. A combination of stromal-derived inducing activ...
متن کاملEfficient Derivation of Functional Human Airway Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling.
Effective derivation of functional airway organoids from induced pluripotent stem cells (iPSCs) would provide valuable models of lung disease and facilitate precision therapies for airway disorders such as cystic fibrosis. However, limited understanding of human airway patterning has made this goal challenging. Here, we show that cyclical modulation of the canonical Wnt signaling pathway enable...
متن کاملGlycogen Synthase Kinase 3β and Activin/Nodal Inhibition in Human Embryonic Stem Cells Induces a Pre-Neuroepithelial State That Is Required for Specification to a Floor Plate Cell Lineage
The floor plate is one of the major organizers of the developing nervous system through its secretion of sonic hedgehog (Shh). Although the floor plate is located within the neural tube, the derivation of the floor plate during development is still debatable and some studies suggest that floor plate cells are specified by Shh in a temporarily restricted window different to neuroepithelial cells...
متن کامل